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The steady-state existence problem for Kraichnan advected passive vector models is considered for isotropic
and anisotropic initial values in arbitrary dimension. The models include the magnetohydrodynamic �MHD�
equations, linear pressure model, and linearized Navier-Stokes �LNS� equations. In addition to reproducing the
previously known results for the MHD model, we obtain the values of the Kraichnan model roughness
parameter � for which the LNS steady state exists.
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I. INTRODUCTION

This is a companion paper to a previous work by the
present author �1�, wherein the phenomenon of anisotropic
anomalous scaling was studied in the context of passive vec-
tor fields. The work was in part incomplete, as the main
assumption was the existence of a steady-state solution for
the pair correlation function. We aim here to find exactly the
preconditions under which this assumption is valid. Much of
the technical material is from the above paper, to which we
often refer for details. We study the stability of an equal time
pair correlation function of a field u�t ,x� determined by the
equation

u̇i − ��ui + v · �ui − au · �vi + �iP = 0, �1�

where the vector field v�t ,x� is determined by the Kraichnan
model �2� and all vector quantities are divergence free.

The model was introduced in �3� as the most general lin-
ear passive vector model respecting galilean invariance. The
parameter a=−1, 0, or 1 corresponds, respectively, to the
linearized Navier-Stokes equations �3� �abbreviated hence-
forth as LNS�, the so-called linear pressure model �LPM�
�3–7� and the magnetohydrodynamic �MHD� equations
�3,8–15�. In the context of the magnetohydrodynamic case,
the inexistence of the steady state is known as the “dynamo
effect,” where the dynamo refers to exponential growth in
time of the pair correlation function �see, e.g., �8–10� and
references therein�. This problem is by far the easiest of the
three due to the vanishing of the nonlocal pressure effects. In
�4� it was shown that for the linearized pressure model �cor-
responding to a=0�, the steady state always exists by show-
ing that the semigroup involved with the time evolution is
always positive. The analysis for the linearized Navier-
Stokes case with a=−1 is considerably more difficult than
the above two cases since, unlike in the MHD case, the non-
local effects are present and contribute strongly to the dy-
namics, and because, unlike in the LPM case, the semigroup
is not always positive.

The present goal is therefore to find the values of � for
which the LNS steady state exists, where � is the roughness
exponent of the Kraichnan velocity field v�r�. The method
by which this is accomplished involves applying a Mellin

transform on the eigenvalue equation for the two-point cor-
relation function, and by solving a resulting recursion rela-
tion.

II. MODEL

We sketch here the derivation of the equation in Mellin
transformed form and refer to the previous paper �1� for fur-
ther details. All vector quantities in Eq. �1� being divergence
free results in an expression for the pressure,

P = �1 − a��− ��−1�iv j� jui. �2�

One may then rewrite the equation compactly as

u̇i − ��ui + Dijk�ujvk� = 0, �3�

with an integrodifferential operator

Dijk = �ij�k − a�ik� j + �a − 1��i� j�k�
−1, �4�

where �−1 is the inverse laplacian. The equal time pair cor-
relation is defined as

Gij�t,r� = �ui�t,x + r�uj�t,x�� , �5�

where the angular brackets denote an ensemble average with
respect to the velocity field, which in turn is defined by the
Kraichnan model as

�vi�t,r�v j�0,0�� = ��t�Dij�r�

= ��t�D1� d–dq
eiq·r

�q2 + mv
2�d/2+�/2 Pij�q� ,

�6�

where we have defined the incompressibility tensor Pij�q�
=�ij − q̂iq̂ j, d–dqª ddq

�2��d , and �� �0,2� is a parameter describ-
ing the spatial roughness of the flow.

We note a subtle difference from �8� in that we define the
constant

D1 =

4��	2 + d + �

2



��1 − �/2�
D0. �7�

The reason for this is that the velocity correlation and struc-
ture functions would otherwise diverge at �=0 and �=2 as*heikki.arponen@helsinki.fi
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the mass cutoff is removed. This aspect of the Kraichnan
model has been clearly discussed in �23�. The equation for
the pair correlation function is then

�tGij − 2��Gij − Di��Di	
�D�
G�	� = 0. �8�

The Fourier transform of the correlation function will then be
decomposed in terms of hyperspherical tensor basis accord-
ing to the prescription in �16� as

Ĝij�t,p� ª �
a,l

Bij
a,l�p̂�Ĝa,l�t,p� , �9�

where the tensor basis components are

Bij
1,l�p̂� = �p�−l�ij�

l�p� ,

Bij
2,l�p̂� = �p�2−l�i� j�

l�p� ,

Bij
3,l�p̂� = �p�−l�pi� j + pj�i��l�p� ,

Bij
4,l�p̂� = �p�−l−2pipj�

l�p� , �10�

and where �l�p� is defined as �l�p�ª �p�lYl�p̂�, where Yl is
the hyperspherical harmonic function �with the multi-index
m=0�. It satisfies the properties

��l�p� = 0,

p · ��l�p� = l�l�p� . �11�

Note that we are concerned only with even parity and axial
anisotropy. We now introduce the Mellin transform which
will be used to transform the equation into a recurrence/
differential equation. The method was �probably� first used in
�17� in the context of the hypergeometric function. The text-
book by Hille �18� also has a useful section on the Mellin
transform applied to differential equations. The Appendix of
the present work also contains helpful material and also of-
fers some insight into some limitations of the method. We
define the Mellin transform of a Fourier transform of G �the
anisotropy index l will usually be omitted� as

ḡa�t,z� = �
0

� dw

w
wd+zĜa�t,w� , �12�

and the inversion formula

Ga�t,r� = �
0−

d–z�r�zAzḡa�t,z� , �13�

with the definition Az=

d

�2��d
��d/2���−z/2�

2z+1��d+z
2

�
, which originates

from the inversion of the Fourier integral �with volume of
the unit sphere 
d�, and the subscript 0� was used to denote
a contour from −ı� to +ı� passing z=0 from the left �see

Appendix for details�. We also often denote f̄�z��Azḡ�z�,
which is just the ordinary Mellin transform.

Applying the Fourier transform, dividing by p2, applying
the Mellin transform and finally setting the cutoff parameter
mv to zero in Eq. �1� �see �1� for details�, we obtain the
complex recurrence/differential equation

�tḡa�t,z − 2� + 2�ḡa�t,z� − �̃ḡa�t,z − �� − Td+�,d+z−�
ab ḡb�t,z − ��

= 0, �14�

with the definitions

�̃ = �a − 1��d + 1 + a�1 − ���

�
d����d/2�cd

16 sin���/2��	d − �

2
+ 2
�	d + �

2
+ 1
 , �15�

and

T2�,2�
ab =

4��	d + �

2



��1 − �/2�

�
��d/2 + l − ����d/2 − ����� + � − d/2�

����������d + l − � − ��
�ab�z� ,

�16�

where the matrix coefficients �ab�z� are listed in the Appen-
dix of �1�. We have also effectively set D0=1 by redefining
time and viscosity. Requiring the correlation function �9� to
be divergence free, i.e., zero when contracted with pi, results
in only two of the four coefficients, ḡa being independent.
The resulting equation may then be written in the following
form:

�th̄�t,z + � − 2� + 2�h̄�t,z + �� − ��̃1 + A + B · X�h̄�t,z� = 0.

�17�

Here we have performed a translation z→z+�, defined the

vector quantity h̄= �ḡ1 , ḡ2�T and the matrices by

Td+�,d+z = 	A B

C D

, X = 	 0 − �l − 1�

− 1 l�l − 1�

 . �18�

Isotropic sector

We will be mostly concerned with the isotropic case since
much of the actual computations can be neatly performed all
the way. For l=0, only the tensors B1 and B4 are nonzero,
and correspondingly in the tensor decomposition, we only
have the coefficients ḡ1�z� and ḡ4�z�=−ḡ1�z� �due to the di-
vergence free condition�. Equation �17� then becomes a sca-
lar equation for ḡ1�z� alone; hence we only need the �1, 1�
component of the matrix ��̃1+A+B ·X�, which reads explic-
itly
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��̃1 + A + B · X�11

=
2�a − 1��a� − 1 − a − d���1 + �/2���1 + d/2�

�	4 + d − �

2



− pa�z�
��− z/2��	d + z + �

2



2�	2 + d + z

2

�	4 − z − �

2

 � ��

a�z� , �19�

where

pa�z� = − �a − 1�2�d + 1���2 − �� + �z + � − 2�
�d − 1�z2

+ �d�d − 1� + 2a��z + ��− d − 1 + 2a�d + 1�

− a2�1 + 2d − d2 + � − d���� . �20�

The equation in the isotropic sector is then

�tḡ1�t,z + � − 2� + 2�ḡ1�t,z + �� − ��
a�z�ḡ1�t,z� = 0. �21�

III. METHOD

We now consider the eigenvalue problem with ḡ1�t ,z�
�e−Etg�z�, resulting in the equation

Eḡ�z + � − 2� − 2�ḡ�z + �� + ��
a�z�ḡ�z� = 0. �22�

This is analogous to the Schrödinger method in �9–11�. The
steady state exists if one can show that the spectrum is non-
negative. However, for example, in the magnetohydrody-
namic case as in the above mentioned papers and in �8�, it
was shown that there exists a critical value of the parameter
� above which one has negative energies resulting in an ex-
ponential growth in time. This phenomenon is interpreted as
the dynamo effect of magnetic fields. Previous studies on the
dynamo problem have resorted to some approximative or
numerical schemes to find the growth rate �E� as a function of
�. Here we will settle for simply finding the values of � for
which the energies are non-negative, thus implying a steady
state. This is done by studying the zero-energy equation, i.e.,
setting E=0. This has the advantage of providing us with an
exact solution up to a numerical solution of a transcendental
equation.

The argument used in the present work is closely analo-
gous to the classic “node theorem” �see, e.g., �19� and also
Appendix A�, which can be roughly stated as follows. Sup-
pose that for some large enough value of E the correspond-
ing solution fE�r� is oscillating between positive and nega-
tive values are large r and satisfies the boundary condition
fE�L�=0 for some large L �tending to infinity�. If the spec-
trum is bounded from below, we know that by decreasing E
the zeros of fL�r� will move to the right and satisfy the
boundary condition for a discrete set of E. The value of E for
which the smallest zero reaches L is then the ground state
energy. Since we are interested in whether or not the ground
state is positive or negative, we can instead study the zero
energy equation and ask for which values of � the solution
crosses over from nonoscillating to oscillating. We know that

the �=0 equation corresponds to diffusion, i.e., a nonoscil-
lating zero-energy ground state. As we increase �, we may
discover that the solution becomes oscillating at large scales,
which would imply a negative energy ground state and there-
fore instability. The large scale behavior of the solutions is
determined by the negative poles of the Mellin transform, so
the problem is then reduced to finding these poles and deter-
mining if and when they become complex valued.

IV. ISOTROPIC SECTOR OF LNS

The stability problem in the linearized Navier-Stokes case
is closely related to the laminar flow stability problem as
described in Sec. 26 of �20�. The equation is derived from
the Navier-Stokes equation by decomposing the velocity
field into v�r�+u�t ,r�, where v is a stationary solution and u
is a small perturbation, resulting in the equation

u̇i − ��ui + v · �ui + u · �vi + �iP = 0. �23�

The question is then whether or not the laminar flow is stable
under such perturbations. Here instead the field v is supposed
to model a statistical steady-state solution of the full Navier-
Stokes turbulence, as prescribed by the Kraichnan model. We
are therefore studying whether or not the Kraichnan model is
an adequate steady state description of turbulence in terms of
stability. For a=−1 we now have

��
−�z� =

4�d + ����1 + �/2���1 + d/2�

�	4 + d − �

2



− p−1�z�
��− z/2��	 z + d + �

2



2�	 z + d + 2

2

�	4 − � − z

2

 , �24�

where

p−1�z� = �z + ��
− 2z + 2� + d2�z + � − 2� − �z + ��2

+ d�2 + �z − 3�z − �3 − ����� + 4z2. �25�

The problem is obviously a more difficult one than in the
MHD case due to the transcendental nature of the function
��

−. We can however expand it as an infinite product of zeros
and poles according to the Weierstrass factorization theorem
�see, e.g., �21��. The function ��

− may then be rewritten as

��
−�z� = es�z��

k=1

� �z − ak
+��z − ak

−�
�z − bk

+��z − bk
−�

e�/k, �26�

where the � and � signs refer to zeros or poles that have,
respectively, positive �or zero� or negative real parts �see Fig.
2�. We also have the poles bk

+=2k, bk
−=−d−�−2k, and s�z� is

some unknown entire function on the complex plane and � is
a z-independent Weierstrass factor that enforces convergence
of the infinite product. It can be derived by showing that
asymptotically as z→ ��, the poles and zeros of Eq. �24�
behave, respectively, as �2k+const, where the constant term
depends on � and d. It may certainly be possible to derive
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bounds for s�z� by asymptotic analysis of Eq. �24�, but since
it can not contribute to the pole or zero structure of the so-
lution, we refrain from doing so. We can also neglect the
explicit form of the constant � for the same reason. The zero
energy equation from Eq. �22�, rewritten here as

ḡ�z� =
2�

��
−�z�

ḡ�z + �� , �27�

can then be solved by the same methods as in Appendix A
with the strip of analyticity requirement −��Re�z��0, re-
sulting in

ḡ�z� = 
��z���z��2��−z/�

� �
k�0

ez�/�k

�	 z − ak
−

�

�	2k + � − 2 − z

�



�	ak
+ + � − z

�

�	2k + z + d + � − 2

�

 ,

�28�

where ��z� satisfies the equation ��z�=e−s�z���z+��, whose
solution is again an exponential of an entire function. The
following subtlety concerning the above formula should be
observed: we deliberately chose to use the form �1 /��1
−x� instead of ��x�, where the two are related by the Euler
reflection formula ��−z /2���1+z /2�=−� /sin��z /2�. The
reason is that only in this form the strip of analyticity re-
mains pole free, as per the consistency requirement. For ex-

ample, using ��
z−ak

+

� � in the above result would introduce

poles at z=ak
+−�n for positive integers n that would eventu-

ally permeate the strip of analyticity. However, in some cases
as we increase �, the poles will enter the strip of analyticity
and render the solution incompatible with the strip of analy-
ticity requirement. We will also demand that the solution
converges to zero at imaginary infinities in order to justify
the shift of integration contour �see Appendix A�. It seems
quite difficult to deduce the asymptotic behavior from the
above formula, but we can study it by an asymptotic expan-
sion of the exact form of Eq. �24�. The function ��

−�z� be-
haves asymptotically as �z� at imaginary infinities, so the
asymptotic version of the difference equation �27� reads

FIG. 1. �Color online� A plot of the a=−1 poles of the solution ḡ�z� in the isotropic sector versus � in various dimensions. The dashed
curves denote the real parts of complex valued poles. There is an infinity of poles, but all the others not displayed here are real. Also, all the
poles in dimensions d�9 are real in 0���2.

FIG. 2. �Color online� A plot of the critical value �c, above
which the flow becomes unstable, versus the space dimension d.
The upper curve refers to the magnetohydrodynamic case with a
=1 and the lower to the linearized Navier-Stokes case with a=−1.
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FIG. 3. �Color online� A figure showing the leading large scale poles ak
− in various anisotropic sectors in two and three dimensions. The

dashed lines denote the real parts of complex valued poles. The thick curves denote two poles very close to each other. All the poles beyond
what are shown here are real for 0���2.
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ḡ�z� = z−�ḡ�z + �� �29�

up to some irrelevant constant term. The asymptotic solution
is then ḡ�z�=
��z���z��. Multiplication by ��−z /2� /���z
+d� /2� in defining f̄ introduces a pole at z=0, which takes
care of the boundary condition. Then we have asymptotically

f̄�z��
��z�e−��/��yy��−1��x−1/2�, where z=x+ ıy. Fourier expan-
sion of 
� would then contain terms such as sin� 2�

� nz�, which
would spoil integrability for 0���2, unless n=0. Therefore


��z� has to be a constant. We see now that the poles of f̄�z�
occur for non-negative integers n at z=�−2+2k+�n, z
=2�k−1� �with k�0�, and at z=ak

−−�n, where only the latter
affects the large scale behavior. We draw the important con-
clusion that the poles ak

+ have no effect on the steady state
existence problem. By looking at Fig. 1 we can see how the
first few large scale poles ak

− behave in various dimensions.
In two dimensions the leading pole a1

− enters the strip at
around ��0.28 and is complex for all �, which implies that
there is no steady state at all in the isotropic sector, at least
for ��0.28 �24�. In three dimensions the poles a1

− and a2
−

become complex at around �c�0.345 and enter the strip of
analyticity at around ��1.08. Similar behavior occurs with
different �c in higher dimensions until at d=9 the poles stay
real for all 0���2. We have plotted the value of �c in Fig.
2 in dimensions 2¯9 together with the magnetohydrody-
namic case. The fact that in some cases for large enough �
the strip of analyticity condition is violated could possibly
mean that the steady state exists also for some large values of
�. We will however be content with studying the cases for
which such a violation does not take place.

One important lesson of the present section is that the
“complexification” hypothesis of �1,8� is indeed an indica-
tion of instability of the flow in the sense that the imaginary
parts of the scaling exponents correspond to oscillations of
the correlation function and are therefore responsible for the
instability. The second lesson is that one only needs to be
concerned with the negative zeros ak

− of ��
a�z� when consid-

ering the stability problem since they become the poles in the

solution f̄�z�. The positive zeros ak
+ appear only as zeros in

f̄�z�.

V. ANISOTROPIC SECTORS OF LNS

The anisotropic sectors can be studied with the same
methods as above. We will however refrain from performing
the actual computations and simply extend what we have
learned from the isotropic sector to the anisotropic case,
namely, that one simply needs to study the complexification

of the negative poles of the solution f̄ a�z� �we now have a
matrix equation�. The role of �� will now be taken by the
determinant of the matrix in Eq. �17�, instead of just the �1,
1� component. Since we already know that the flow is stable
in the anisotropic sectors for a=1 and a=0 �see, e.g., �4,16��,
we concentrate only on the a=−1 case in various dimen-
sions. The anisotropic linearized Navier-Stokes exponents
differ from the magnetohydrodynamic ones in that even if
the leading exponent is real, the next to leading exponent
may be complex valued, resulting in oscillating behavior at

intermediate scales. These exponents however have no effect
on the existence problem. This is because the boundary con-
dition at R tending to infinity can only be satisfied by the
leading oscillating exponent. We also need to make sure that
the periodic function 
��z� is again required to be a constant
due to integrability so that it will not cancel with any of the
poles. This results from the fact that all matrix coefficients
beside the �1,1� coefficient in Eq. �19� behave asymptotically
as �z� irrespectively of l �25�, and therefore so does the
determinant. Hence the same conclusions will be drawn as in
the isotropic case, i.e., that 
� is indeed a constant.

We have plotted some leading negative exponents in vari-
ous anisotropic sectors in two and three dimensions in Fig. 3.
In two dimensions the leading anisotropic exponent is real,
except �strangely enough� for ��0.15. The anisotropic sec-
tors are therefore quite stable in comparison to the com-
pletely unstable isotropic sector. In three dimensions the l
=2 anisotropic leading exponent becomes complex at �c

�2�

�0.937 and all the higher sectors have purely real leading
exponents. The anisotropic sectors are therefore much more
stable in comparison to the isotropic sector critical value
�c

�0��0.345, somewhat similarly to the magnetohydrody-
namic case. We also note that none of the poles lie inside the
strip of analyticity, so the results should hold for all �. In
dimensions d�4 the anisotropic exponents are always real.

VI. CONCLUSION

The stability analysis of the passive vector models previ-
ously considered in a companion Paper 1 was successfully
completed. The critical value �c below which the steady state
exists was found in all dimensions, although the possibility
of a steady state for an even larger region could not be ex-
cluded in the isotropic sector. The reason for flow instability
was shown to be caused by the complexification of the larg-
est negative pole of the solution, corresponding to large scale
behavior of the correlation function. It was observed that in
two dimensions the linearized Navier-Stokes problem is not
stable for any ��0 in the isotropic sector, but relatively
stable in the anisotropic sectors. In three dimensions the iso-
tropic sector was observed to be stable for ��0.345, the l
=2 anisotropic sector for ��0.937 and higher anisotropic
sectors for all �. In dimensions from four to eight, the iso-
tropic sector is stable below the critical values plotted in Fig.
2 and the anisotropic sectors are stable for all �. In dimen-
sions d�9, all sectors are stable for all �.
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APPENDIX: MELLIN TRANSFORM AND EXAMPLES

The Mellin transform has been used to solve differential
equations previously in, e.g., �17,18�. The purpose of the
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present appendix is to clarify some aspects of the Mellin
transform method and to point out some of its limitations.

1. Solving differential equations by Mellin transform

Define the Mellin transform of a function f�r� with r�0
as �26�

f̄�z� � �
0

� dw

w
w−zf�w� . �A1�

We will be concerned with finite diffusivity/viscosity � in
our equations, which amounts to f�0��1 �neglecting nor-
malization�, and power law or faster decay at infinity with
some so far unknown exponent −�. The complex parameter z
in the above formula is therefore restricted to −Re���
�Re�z��0 �27�. The inverse transform is then

f�r� � �
c−ı�

c+ı�

d–zf̄�z�rz, �A2�

where −Re����c�0. Because of the constant boundary

condition at zero, f̄�z� must have a pole at z=0. We will
therefore take c=0 such that the contour will pass z=0 from
the left, and denote this by 0� under the integration sign. We
can now use the Mellin transform to define a differential/
integral operator of order 
 as

�D̂
f��r� � �
0−

d–z�
�z� f̄�z�rz−
. �A3�

For example the derivative �r would correspond to 
=1 and
�1�z�=z. Consider now the equation

�D̂
f��r� + �f�r� = 0, �A4�

with the above-mentioned boundary conditions. Expressing
this with the help of the Mellin transforms yields

�
0−

d–z�
�z� f̄�z�rz−
 + ��
0−

d–zf̄�z�rz

= �
0−

d–z�
�z� f̄�z�rz−
 + ��

−

d–zf̄�z − 
�rz−


= �
0−

d–z
�
�z� f̄�z� + � f̄�z − 
��rz−


+ �
i

rziR� f̄�zi�� � 0, �A5�

where in the second term on the second line we have simply
changed the integration variable z→z−
 and shifted the
contour from 
→0 on the third line �assuming sufficiently
fast decay at imaginary infinities�, and also denoted in the
last sum the possible contribution of poles inside the strip
−
�z�0. We can solve the problem by solving the recur-
sion equation

�
�z� f̄�z� + � f̄�z − 
� = 0, �A6�

but only if we can find a solution for which the strip of

analyticity is pole free, i.e., that the sum of residues above
vanishes, which also implies Re����
. It turns out that in
the present context there are situations where such solutions
cannot be found, at least not without improving the present
procedure. We will however be able to find a sufficiently
large class of solutions for which this problem does not ap-
pear.

2. Isotropic a-model equation for �=2

For �=2 the problem becomes simple enough to be solved
exactly even for nonzero energies. From Eq. �19� we have
now

�2
a�z� = �d − 1�z2 + �4a + d�d − 1��z + 2a�d + a�d2 − 2�� ,

�A7�

and Eq. �22� can now be written as

�z − z+��z − z−�ḡ�z� = 2�ḡ�z + 2� , �A8�

where we have defined the roots

z� =
− 4a − d�d − 1� � �DE

2�d − 1�
, �A9�

with the discriminant

DE = − 4�d − 1�E + d2 + d�d − 2��d2 − 8�d + 1�a2� .

�A10�

Employing the definition f̄�z��Azḡ�z��
��−z/2�

2z��z+d
2

�
ḡ�z� and a

translation z→z−2, we obtain the equation

z�z + d − �
�z − z+ − 2��z − z− − 2�

f̄�z� +
1

2�
f̄�z − 2� = 0, �A11�

which should be compared to Eq. �A6�. A general solution to
Eq. �A11� can be written as

f̄�z� = �2��−z/2 
2�z�
sin��z/2�

�	 z − z+

2

�	 z − z−

2



�	 z + 2

2

�	 z + d

2

 , �A12�

where 
2�z+2�=
2�z� is a so far arbitrary periodic function
�with the subscript denoting the period�. The solution
�modulo the 
2 term� has poles at z=2n and z=z�−2n for
non-negative integer n. The width of the strip of analyticity
therefore has to be −2�Re�z��0, from which we conclude
that 
2�z� must be an entire, periodic function and that the
poles Re�z���−2. At imaginary infinities the above solu-
tion behaves asymptotically as

f̄�z� � �2��−z/2
2�z�e−��/2��z�za−1. �A13�

Since 
2�z� is entire, we can expand it in Fourier series as

2�z�=�k�0ak sin�k�z�. Anything else than k=0 would how-
ever spoil the above asymptotic behavior, so we conclude
that 
2�z�=const. Inverting the Mellin transform then yields
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G�r� = C1�
0−

d–z

�	 z − z+

2

�	 z − z−

2



�	 z + 2

2

�	 z + d

2



�r2/2��z/2

sin��z/2�
,

�A14�

which is what one would obtain e.g. in the MHD problem
with a=1 by a direct coordinate space solution �8�. The
MHD problem for ��2 can also be easily solved, although
we will not reproduce that calculation here. The ground-state
energy is then the value of E for which the discriminant DE
vanishes �crossover between oscillating and power law de-
cay�, i.e.,

E0 =
d�d3 − 10d2 + 9d + 16�

4�d − 1�
, �A15�

which is negative for 3�d�8 implying a dynamo effect for
�=2. It is now tempting to use the above solution also for
other values of a. However, for example, for a=−1 and d
=3 we have

z� = −
1

2
�

1

2
�− 2E − 15, �A16�

which means that for energies E�−15 /2, the poles z� are
always inside the strip of analyticity. We must therefore con-
clude that in cases such as this, the method is not sufficient to
determine the existence of a steady state.
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